
Izaak Walton once likened mathematics to fishing: Both are sol- 
itary pursuits that "can never be fully learnt." Yet mathematics 
has a loathsome reputation. It frightens many people and may 
bore the rest. In its highest reaches, it seems to defy common 
sense. There are 17,000 mathematicians in the United States 
today, almost all of them employed by universities or by flour- 
ishing "high-tech" corporations. Their ranks include brilliant 
theorists, yeoman problem-solvers, colorful eccentrics, class- 
room drones. The discipline has progressed by leaps and bounds 
since 1900; the past decade has been especially fruitful. But few 
Americans understand the achievements of modern mathe- 
matics or its contributions to the workings of an  industrial soci- 
ety. The federal government is more appreciative; Washington 
plans to create two national mathematical "institutes," one at 
the University of Minnesota, the other a t  the University of Cali- 
fornia, Berkeley. Here, mathematician Rick Norwood explains 
some of the advances of recent years-and describes the un- 
solved problems that his colleagues seek to answer. 

by Rick Norwood 

All mathemat ics  is divided into three parts.  
Roughly, these parts are the study of number systems, 

7 ooo called algebra; the study of geometrical spaces, called 
topology; and the study of functions, called analysis. 
There are also a few islands-number theory and set 
theory, for example - and two vast continents that 
have broken off from the mainland and are drifting - 

\ill,,!l colktll,lll ' out to sea: computer science and statistics. 
R o n  BwA, am! Visiiiixiipi- 
I ~ I ~ ~ , ~ ~  CC,I,,,,,I,,,, I , , , , L ~ , , , \  Most mathematicians identify with one or more of 
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these disciplines, and it is almost impossible to keep 
up with any but the most important results outside 
one's own area, a song of woe heard in other lands 
than mathematics. 

The total amount of mathematics written in this 
century probably exceeds the total of all previous 
centuries taken together. In 1980, more than 64,000 
pages of new mathematics were published. Not every- 
one in the field today (perhaps not anyone) is a 
Newton or a Gauss, but much of the mathematics now 
being done meets extremely high standards of origi- 
nality and excellence. Much has been discovered that 
is startling and beautiful. 

Most people think of mathematics as a dry, cob- 
webbed science, written by Euclid on tablets of stone 
and passed down through the ages from teacher to 
student until all are bent under the load-as the do- 
main of hoary eccentrics at one extreme, and of fear- 
some schoolmasters at the other. It has long been the 
butt of jokes. "I have hardly ever met a mathe- 
matician capable of reasoning," Plato once said. To 
see mathematics exhibit grace and elegance, then, is 
as surprising as the sight, in Shogun, of the warrior 
Toranaga dancing on the battlements. Nevertheless, it 
dances. 

Topology is my own field. To me, the fascination 
of multidimensional geometric shapes is unending. 
One can easily visualize only the simplest of these 
things - the curious Klein bottle, for instance; the 
sphere; the doughnut-shaped torus. The rest one can 
never really "see"; they can be manipulated only in 
one's head. Or one can try (as I have tried) to convey 
their properties by employing seven colors of chalk 
while simultaneously using bodily gestures to simu- 
late motion. I'll save topology for last. First, a brief 
word about computer science and statistics. 

Statistics is the science that nearly got saccharin 
banned in 1977 on the basis of a study of 630 cancer 
patients by the National Cancer Institute of Canada. It 
is also the science used in the 1979 U.S. National 
Cancer Institute study of more than 3,000 patients 
that won saccharin a reprieve. When properly applied 
(e.g., by a life insurance company), statistics is as 
"true" and as useful as any other mathematics. 

Computer science, meanwhile, has moved into 
our living rooms and seems there to stay. Already, 
computers build Toyotas and play games with us. 
Tomorrow, they may do housework. The day after to- 
morrow, they may tell us that they don't do windows. 

Torus 

Till. 
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~ v a r i s t e  Galois 
(1811-32) 

Computers have revolutionized commerce, communi- 
cations, government; they are an indispensable tool in 
engineering and in all of the physical sciences. 

While mathematics gave birth to computer sci- 
ence and statistics (in the case of the former, electrical 
engineering was the father), both have largely packed 
up and moved out ,  perhaps because of mathe- 
maticians' schoolmarmish insistence on right an- 
swers. 

The problems with statistics are obvious. Given 
the real-world constraints of time, money, or a client's 
needs, there is a tendency to cut corners. Much of the 
statistical data published these days is quite mislead- 
ing. Computer scientists, for their part, are primarily 
interested in programs that will be reasonably reli- 
able. But no program is perfect, and a good mathe- 
matician can usually come up with some "input" that 
will overload a computer's memory. I can sometimes 
befuddle my own pocket calculator by asking it to per- 
form certain chores that could quite easily be worked 
out with pencil and paper. 

Does it sound as if I take a dim view of mathe- 
matics' glamorous offspring? I don't, really. I am im- 
pressed by the power of modern statistics and 
staggered by the advances in computers. If anything, I 
am a little envious. I wish simply to note a difference. 
Applied mathematics asks, "How can we accomplish 
such-and-such in a practical and efficient way?" Pure 
mathematics asks, "What is? What different kinds of 
mathematical objects can exist?" 

Take "group theory ." 
Algebra, as I have mentioned, is a study of 

number systems. The algebra one learns in high 
school is an important example, but it bears the same 
relation to what a mathematician means by algebra as 
the study of lions bears to zoology. Mathematicians 
classify number systems according to their properties, 
just as zoologists classify animals. A warm-blooded 
animal that suckles its young is a mammal. A set with 
one operation that is associative and has identity and 
inverses is a group. (An example of an operation would 
be addition or multiplication.) The associative law is 
(a+b)+c = a+(b+c).  In other words, when adding 
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three or more numbers, you can drop the parentheses 
without being ambiguous. The law of identity is that 0 
+ a = a + 0 = a. The law of inverses is that a + (-a) = 
(-a) + a = 0. 

The whole numbers form a group, but so do ma- 
trices, polynomials, and functions. Quite a lot of 
things can play the role of numbers in abstract 
algebra, just as, in a court of law, the Interior Depart- 
ment, the Sierra Club, and Exxon may all be consid- 
ered, legally, to be "individuals." If you find this 
troublesome, refer to Whitehead (below). 

"Now, it cannot be too clearly understood that, in sci- 
ence, technical terms are names arbitrarily assigned, 
like Christian names to children. There can be no ques- 
tion of the names being right or wrong. They may be 
judicious or injudicious. . . . The essential principle in- 
volved was quite clearly enunciated in Wonderland to 
Alice by Humpty Dumpty, when he told her, apropos 
of his use of words, 'I pay them extra and make them 
mean what I like."' 

-Alfred North Whitehead, 
An Introduction to Mathematics (1911) 

Groups occur in all branches of mathematics, and 
in theoretical physics as well, notably in the study of 
crystals and quarks. Many important mathematical 
problems come down to a question about the groups 
involved. For example, in the theory of "knots" (a 
branch of topology), we know that for every knot there 
is a group. If we can show that the group in question is 
the group of whole numbers, then we know that the 
"knot" can be pulled and stretched into a circle; that 
the "knot" was really untied to begin with. 

For 150 vears. since the davs of Aueustin-Louis 
Cauchy and Evariste Galois, mathematicians have 
been trying to answer these questions: "What differ- 
ent types of groups can there be? What are they like? 
How can we tell one from another?" This is called the 
classification problem.' 

Let us concentrate on the finite groups, groups 
with a finite number of elements. The smallest finite 
group consists only of the number 0 and the operation 
+. It is a group with only one number; in math ter- 
minology, a group of order one. Once you know that 0 
+ 0 = 0, you know everything you need to know about 
this group. 

The next smallest group has order two. One way 

T h e  term "group 
theory" itself can be 
traced back to a letter 
wr i t t en  in 1832 by 
Galois. The letter was 
composed on the eve 
of the duel in which 
the 20-year-old Galois 
was killed. For more 
informat ion abou t  
Cauchy, Galois,  and 
other prominent fig- 
urcs, see Eric Temple 
Bell's classic Men of 
Mathematics (Simon 
& Schuster, 1937). 
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^ 'Thus f a r ,  I havc 
called the group op- 
a t i o n  "addi t ion" 
and  written it  "+," 
and I will continue to 
do so, but I could just 
a s  well havc called it 
"multiplication" o r  
anything else. What's 
in a name? The rows, 
by any o the r  name ,  
would add as  sweet. 

to describe it is by using the numbers T (for True) and 
F (for False). When we "add" two numbers, we are 
asking for the truth value of the statement, "These 
numbers are the same." So T + T = T ,  F + F = T, but 
T + F = F and so does F + T. The identity in this case 
is T, because T added to any number gives that 
number as an answer. Each number is also its own 
inverse, because a number added to itself gives the 
identity T. Another way of looking a t  the group of 
order two is by substituting "even" for T and "odd" 
for F. You might think this was a second group of 
order two, but mathematicians do not look at  it that 
way. To a mathematician, the group of T and F is 
"isomorphic" to the group of even and odd, because 
the addition rules are the same for both groups. So we 
say that there is only one group of order two.2 

There is also only one group of order three (i.e., 
with three elements), but there are two different 
groups of order four, and from then on there are often 
many groups of a given order. 

By a technique known as the composition series, 
finite groups - groups with a finite number of ele- 
ments-can always be broken up into smaller groups 
called simple groups, somewhat as a whole number 
like 15 can be broken into its prime factors, 3 and 5. 
Thus, mathematicians have been chiefly concerned 
with classifying the finite simple groups. And in 1980, 
the process of classification was completed. 

The easiest examples of finite simple groups are 
the cyclic groups of prime order (e.g., a group of order 
three, since 3 is a prime, divisible only by itself and I), 
and the so-called alternating groups of order 60 or 
more. These a re  groups one would study in an  
undergraduate course in abstract algebra. There are 
infinitely many of them, but they are completely clas- 
sified and well understood. 

Next, if you pursued abstract algebra at  the grad- 
uate level, you would encounter finite simple groups 
of the Lie type, named for Norwegian mathematician 
Marius Sophus Lie (pronounced Lee). These are not 
easy to understand. Even so, finite simple groups of 
the Lie type are also completely classified. 

Finite simple groups that are not of prime order, 
or alternating, or Lie, are called sporadic. They are the 
sports, the strange ones. They were the last type of 
finite simple group to be classified. We now know that 
there are exactly 26 of them. 

Some of them have pet names like Monster and 
Baby Monster; these two, in fact, were the last to be 
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discovered. The order of Monster is 808,017,424,794, 
512,875,886,459,904,961,710,757,005,754,368,000,000, 
000. In other words, it has that many elements. Its 
discovery by Bernd Fischer of the University of 
Bielefeld in West Germany was one of the most impor- 
tant achievements in pure math in recent years. 

Why have I led you over such murky terrain? To 
repeat: Groups are building blocks, like the elements 
of the periodic table. Some elements-hydrogen, say 
-are rather basic; we know pretty well what they can 
be used for, and we use them all the time. Other ele- 
ments-lawrencium, for example, with its half-life of 
eight seconds-remain exotic. There is really no "use'' 
for lawrencium. I .expect it will likewise be a while 
before Monster gets much of a workout. But one never 
knows, for groups underlie many things: particle 
physics, chemistry,  and ,  as  Martin Gardner has 
pointed out, the theory behind any magic trick involv- 
ing ropes and twisted handkerchiefs. 

It would be a mistake to conclude that mathema- 
ticians necessarily care whether a new discovery has 
some practical application. Mathematicians do what 
they do because it is beautiful, interesting, challeng- 
ing. What flares the nostrils is the prospect of a chase. 
A problem beckons: "Come, Watson. The game is 
afoot." Still, there are always surprises. Attempts by 
practical men to separate the pure from the applied 
are artificial concessions to the finiteness of human 
thought and time. 

Number theory, for example, has always been 
considered the purest of pure math. It is the study of 
whole numbers, prime numbers in particular. Yet one 
of the most practical applications of mathematics in 
recent years came out of number theory: public key 
cryptography. The first method of public key cryptog- 
raphy was discovered by Whitfield Diffie and Martin 
Hellman of Stanford in 1976, but the system I am 
about to describe is the work of Ronald Rivest, Adi 
Shamir, and Leonard Adleman, all of MIT. 

To understand public key cryptography, you must 
understand the word modulo, a concept introduced by 
Karl Friedrich Gauss in 1801 in his classic Dis- 
quisitiones arithmeticae. The integers modulo five (to 
give an example) are obtained by setting 5 equal to 0, 
so that you count 1,2,3,4,0, 1,2,3,4,0, and so on. Any- 
thing that is cyclic can be measured in modulo num- 
bers. We tell time modulo 12. Numerous card tricks 
can be worked modulo 13. Because both the Earth and 
the moon follow a cyclic pattern, one can use modulo 

Karl  Frieclrich Gauss 
( 1  777- 1855) 
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arithmetic to determine the date on which Easter will 
fall in any year (the method below will work for any 
year between 1900 and 2099). 

1 Call the year Y Subtract 1900 from Y and call the difference N 

2 Dwde N by 19 Call the remainder A 
3 Divide [7A - 1) by 19 Ignore the remainder and call the quotient 6 
4 Divide ( n A  - 4 - E )  by 29 Call the remainder M 

5 Divide N by 4 Ignore the remainder and Call the quotient 0 
6 Divide (N - 0 -  31 - M) by 7 Call the remainder W 

7 The date 01 Easter is 25 - M - W It the result is positive, the month is Apnl 

I it is negative the month is March (interpreting 0 as March 31 - 1 as 

Mar& 30 - 2  as March 29 and so on to - 9  for March 22 

From " , 4 1 a ~ I ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ o I  G o ~ ~ c , . ~ ' '  I n  ,4<0rm Gordn~v 
<' I981 hv Scientific American. Inc.  Mlni-Ili.s reirn'ed. 

^Indeed,  the inte- 
gers modulo five with 
the operation of addi- 
tion is an example of 
a cyclic g roup  of 
p r ime  o rde r ,  which 
we encoun te red  
above. This is one of 
the nice things about 
mathematics. Even as  
things get "cul-iouscr 
and  curiouser," one 
finds old f r iends in 
unexpected places. 

Let us go back to modulo five. You can add and 
multiply modulo five (or any other number) provided 
you go back to zero every time you reach five. The 
easiest way to cast out fives is to divide by 5 and take 
the remainder. Thus, 4 + 3 = 2 (the remainder when 
you divide 7 by 5) and 4 x 4 = 1 (the remainder when 
you divide 16 by 5). This arithmetic may seem strange, 
but it obeys many of the laws of ordinary arithmetic3 

What does this have to do with cryptography? 
Well, you can see how easy it is, given a number, to 
find out what it equals modulo five. But what about 
going the other way? If I tell you what my number 
equals modulo five, you have no way of guessing what 
my original number is. I tell you my number is 3 
modulo five. What is it? It might be 8. It might be 63. 
It might even be 3. A kind of one-way trap door has 
been set in place. This is the basis of public key cryp- 
tography, a tamper-free system whose applications 
range from ensuring the privacy of electronic mail to 
running a network of agents behind the Iron Curtain. 

In practice,  public key cryptography works 
modulo some very large number (one of 200 digits, 
say) that is the product of two very large prime num- 
bers. To put a message into code, you first transform 
the message into a number (any schoolboy method for 
accomplishing this will do) and then raise that  
number to a power that anyone can know, modulo 
some very large number that is also open to anyone. 
Thus, anybody can encipher a message. But, once a 
number  has  been reduced modulo some other  
number,  there is no way of getting the original 
number back. 

Now the cyclic nature of modulo numbers comes 
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into play. There is another number, a secret number. 
When you raise the enciphered message to this secret 
power, it comes around to the original message. 

Let's do an actual example. (So that we don't need 
a computer, I will use unrealistically small numbers.) 
The first step is to pick any two prime numbers. We 
pick 3 and 11. Multiply these numbers to get 33. We 
will work modulo 33. Subtract one from each prime to 
get 2 and 10. Multiply 2 times 10 to get 20. We calcu- 
late our public number and our secret number modulo 
20 (since the standard abbreviation for modulo is 
mod, we say "mod 20"). First, list all the numbers that 
divide 20. Your list should read: 1, 2 ,4 ,  5, 10,20. For 
your public number, pick any number between 1 and 
20 that is not divisible by any number on this list 
(except 1, of course). We pick 7. For your secret 
number, use your computer to find a number that, 
when multiplied .by 7 and reduced mod 20, gives 1. 
The mathematics of modulo arithmetic guarantees 
that there will always be such a number, and in this 
case it is not hard to find. The number 3 will do the 
job, because 7 x 3 = 2 1 and 2 1 mod 20 equals 1. So, 
our secret number is 3 ,  and we are ready to go. 

Send your operatives in the field the public 
number, 7, and tell them all to work mod 33. Keep the 
number 3 so secret that not even you know it. The way 
to do this is to have your computer calculate it, with 
instructions to tell no one; but instruct it to raise any 
number entered to this secret power and then reduce 
mod 33. 

Now, your operative is ready to send you a mes- 
sage. Because we are working with such small num- 
bers, it must be a very short message. Suppose he 
decides to send the letter B . The easiest way to change 
letters to numbers is to let A = 1, B = 2, C = 3 ,  and so 
on. So, he changes B to 2, raises it to the seventh 
power (7 is the public number, remember) and re- 
duces mod 33.  Two to the seventh power is 128. To 
reduce 128 mod 33 you divide 128 by 33 and take the 
remainder, which is 29. Your operative then sends you 
the number 29. 

Back at the home office, you get the number. You 
feed 29 into your computer, which raises it to the se- 
cret power, 3 ,  and reduces mod 33. That is, multiply 
29 times 29 times 29, then divide by 33 and take the 
remainder. Do it and see what you get.4 . . 

With small numbers such as these, it is really very 
easy to find the secret number. Just factor 33 into 3 x 
11, then find the secret number the same way we 

A "cipher disc" 
invented by 
Giovanni Battista Porta 
(1535-1615). 

Â¥Â¥Y should get 2 ,  
which yields the orig- 
inal message: B .  
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Bcrnhard Riemann 
( 1  826-66) 

found it to begin with. The key to the success of this 
cipher lies in the fact that it is hard to factor large 
numbers. Mathematicians have been trying to find 
ways to do so for more than 100 years. It would take 
the fastest computer now in existence about 76 years 
to factor a 200-digit number. 

Most mathematicians believe that the problem of 
factoring very large numbers will not be solved in the 
near future, but the U.S. National Security Agency 
(NSA) is taking no chances. The NSA has asked Ameri- 
can mathematicians working in the area of cryptog- 
raphy to submit all new results to government experts 
in Washington prior to publication. Some mathe- 
maticians find this reasonable. Others feel it is an  un- 
warranted intrusion into their lives and work. For 
arguments pro and con, see Notices of the American 
Mathematical Society (Oct. 1981). The debate may be 
academic. The NSA is powerless to prevent mathe- 
maticians in other countries from conducting research 
in cryptography and publishing their results in, say, 
the Saskatchewan Journal of Number Theory. 

Let's turn now to analysis. 
Analysis is the study of functions. A function is 

any rule that assigns a fixed output to any given input. 
The squaring function is a familiar example. Input 3, 
output 9. Input 5, output 25. Other well-known func- 
tions are the sine function and the exponential func- 
tion. Calculus, discovered independently in the 17th 
century by both Isaac Newton and Gottfried Wilheln~ 
Leibniz, is the greatest achievement of analysis. 

To understand the most significant recent result 
in analysis, we need to look at the Riemann zeta func- 
tion, named for the German mathematician Bernhard 
Riemann. The Riemann zeta function has applications 
in algebra and algebraic geometry as well as analysis. 
It is used to estimate the number of primes in a given 
range (say, between 10 and 10 million), which is im- 
portant in the theory of public key cryptography. 

We begin with the number i ,  the elusive square 
root of - 1. It was called imaginary (in "real life," you 
can't square anything and get a negative number), and 
its existence was denied until it proved too useful to 
ignore. Leibniz once called imaginary numbers "a 
wonderful flight of God's Spirit; they are almost an 
amphibian between being and not being." If we utilize 
these amphibians as in the graph on the facing page, 
then any number in the field-say, 3 + 2i, or -2 - 2i, 
or even -2 + 0;-is known as a complex number. In 
trigonometry, we learn how to do arithmetic with 
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complex numbers. 
The input of the Riemann zeta function is a com- 

plex number. So is the output. How is the Riemann 
function defined? To define a function, we need to 
know what to do with the input. The squaring func- 
tion turns 3 (for example) into 9. The reciprocal func- 
tion turns 3 into Vs, 4 into %. If these simple functions 
are like light bulbs (input: electricity; output: light), 
then the Riemann zeta function is a whole factory (in- 
put: raw materials; output: finished product). 

The Riemann zeta function inputs a complex 
number, 2, then takes the series 1 + 2 + 3 + 4 + 5 +. . . 
( ' I .  . ." means: go on forever), takes its reciprocal 
term-by-term to get 1 + ?h + Vs + . . ., and then raises 
the whole thing, again term-by-term, to the z power. 
The sum of this infinite series is the output of the 
Riemann zeta function, and for any z which begins 
with a number greater than 1 (e.g., 3 + 2i), the series 
 converge^.^ This means that it adds up to a finite 
number. (The series 1 + ?h + '/4 + $6 + '116 . . . also 
converges: It adds up to 2. While some people may 
wonder how one can actually add up an infinite 
number of terms-Will we ever really reach 2?-Isaac 
Newton discovered a method: calculus.) 

Now, whenever you have a function, a natural 
question to ask is, "Where is the output zero?" This is 
what most of high school algebra was about. Where 
arethezeroesofx2 + 2x - 3?Answer:x = -3,0rx = 1. 
Where are the zeroes of the Riemann zeta function? To 
date, 3.5 million zeroes have been found by computer, 
not counting the zeroes (considered trivial) that lie 
along the horizontal axis. So far, all of the 3.5 million 

'For z's that begin 
wi th  a n u m b e r  less 
than o r  equal to 1 ,  w 
must extend the zeta 
function by a process 
known a s  ana ly t i c  
con t inua t ion .  Once 
this is done, then for 
every complex num- 
ber except 1 + O i ,  the 
Ricmann zeta  func- 
tion converges. 
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ian space-time is an example of a space that has four 
dimensions.) 

A one-dimensional manifold is a curve. A two- 
dimensional manifold is a surface. We might call a 
three-dimensional manifold a three-space, and a 
four-dimensional manifold a hyper-space. It is often 
easier to picture a manifold by putting it in a Eucli- 
dean space of higher dimension. A sphere, for exam- 
ple, is simply a surface: a two-manifold. But try to 
picture a sphere without picturing it in three- 
dimensional space. Mathematically, that three- 
dimensional space is unnecessary, but conceptually it 
is essential .' 

The question then arises: What is the smallest 
dimensional Euclidean space in which you can put a 
given manifold? In 1944, Hassler Whitney came up 
with a preliminary answer. He proved that any 
n-dimensional manifold (n-manifold, for short) can be 
put at least into 2n - 1 dimensional Euclidean space. 
So, we can always put a three-manifold into five- 
space. One- and two-manifolds are well understood, 
but there is a profusion of three-manifolds, and they 
are extremely hard to get a grip on. Seeing how they 
fit into Euclidean space is a big help. 

When we put one space into another, we do not 
want to tear it or crease it. For example, we can flatten 
a sphere, but not without a sharp crease at the edge, so 
we cannot put a sphere into a plane. There are two 
legitimate ways of putting one space into another: 
irninersion and embedding. An immersion allows the 
space to intersect itself, an embedding does not. A fig- 
ure eight is an immersion of a circle in the plane: It 
intersects itself. The letter 0 is an embedding of a 
circle in the plane. To the right is a picture of a Klein 
bottle; it is an immersion because we construct it by 
passing the neck of the bottle through the bottle's side. 

The new theorem, proved by Ralph Cohen of 
Stanford, and conveyed to me by Don Davis of Lehigh, 
shows that any n-manifold can be immersed in Eucli- 
dean space whose dimension is 2n minus the number 
of 1's in a binary expansion of n. The binary system is 
a way of expressing any number in terms of 1's and 
0's) and the transformation of an ordinary number 
into binary form is easily accomplished (see box on 
next page). Thus, any five-manifold can be immersed 
in Euclidean eight-space because five in binary form 
has two ones in it. 

A topological question that remains unsolved is 
the dimension of the smallest Euclidean space in 

'There a r e  three-  
dimensional spheres, 
Four-dimensional 
spheres ,  a n d  s o  o n ,  
but they are difficult 
to picture. IF you had 
two bal ls  a n d  \ifere 
ab le  to  glue the i r  
skins together so that 
one  sphe re  was  
turned inside out over 
the  o the r ,  then you 
\vouId have a three- 
dimensional sphere. 

From G~aduatc Texts 
in Mathcmat~cs bSJo/m Srz//we//. 

@ 1980 by S p ~ ~ r g c r ~ V d o g ,  N L ~  York. 
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To change an ordinary number into a binary number, 
divide the number by 2 and write down the remainder. 
Keep dividing by two and writing the remainder. 
When your quotient is 0, stop. The remainders, written 
in reverse order, form the binary expansion. The bi- 
nary expansion of 41 is achieved by: 

which every n-manifold can be embedded. The conjec- 
ture is that every n-manifold can be embedded in Eu- 
clidean space of dimension 272, minus the number of 
1's in the binary expansion of n, plus 1.  But this is just 
a conjecture. 

During the past decade, many famous problems 
have fallen, but many more-like the embedding con- 
jecture above-remain unsolved. One of the most ob- 
durate conundrums of mathematics is the problem 
known as Fermat's last theorem, which involves solu- 
tions to the equation x7I + yi' = z ' ~ ,  where x, y ,  z, and n 
are whole numbers. One easy solution is 32 + 42 = s2 , a  
familiar configuration to anyone who remembers the 
Pythagorean theorem. Indeed, solutions are a dime a 
dozen if n = 1 or n = 2. Fermat's last theorem states 
that the equation has no solutions that are whole 
numbers if n is 3 or larger. The trouble is proving it. 

Pierre de Ferrnat was a French jurist who lived in 
Toulouse and corresponded about mathematics-his 
hobby-with Descartes, Pascal, Leibniz, and Newton. 
He originated the conjecture that bears his name and 
in 1637 wrote in the margin of a book: "I have discov- 
ered a truly remarkable proof which this margin is too 
small to contain.'' However, he never wrote down the 
proof, even though he lived for 28 more years. Per- 
haps, he did not have a proof after all. After another 
300 years, the theorem still has not been proved. 

Some dents, of course, have been made. The Swiss 
Leonhard Euler proved it for n = 3 in 17703 Adrien- 
Marie Legendre of France proved it for n = 5 in 1823, 
and the German number theorist Ernst Edward 
Kummer proved it for almost all prime numbers in 
1847. Modern computers have since proved it for any 
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iz between 3 and 30,000. But such computer searches 
give no insight into a general solution to the problem. 
We may never know whether Fermat's last theorem is 
correct, but the efforts to prove or disprove it over the 
centuries have led to much useful and ingenious 
mathematics-a reward in itself. 

The most important unsolved problem in mathe- 
matics may be the Poincare conjecture, posed by the 
brilliant French astronomer-mathematician Jules- 
Henri Poincark. To understand it, one must return to 
the topological spaces called manif01ds.~ 

A manifold is termed "simply connected" if any 
loop of thread on its surface can be pulled in- by 
someone holding both ends of the loop firmly-while 
at  the same time remaining in continuous contact 
with the manifold. A sphere is simply connected; try it 
with a piece of thread and a rubber ball. A torus is not 
simply connected. A loop of thread around it will lose 
contact with the surface as it is pulled in and passes 
over the hole; if the thread goes through the hole to 
begin with, one cannot pull it in a t  all. The Poincare 
conjecture states that the only simply connected 
three-manifold is the three-dimensional sphere. 

A version of the Poincare conjecture has been 
proved for dimensions five and above (i.e., the only 
simply connected five-manifold is the five-dimen- 
sional sphere). The four-dimensional case has just 
been proved by Michael Freedman of the University of 
California, San Diego. (Another important new result.) 
The three-dimensional case remains unsolved. 

But there are distant rumblings. Mathematician 
talks to mathematician. While nothing has yet ap- 
peared in print, the word is, to everyone's surprise, 
that the Poincare conjecture may be false. 

So it goes, new mathematics from old, curving 
back, folding and unfolding, old ideas in new guises, 
new theorems illuminating old problems. Doing 
mathematics is like wandering through a new coun- 
tryside. We see a beautiful valley below us, but the 
way down is too steep, and so we take another path, 
which leads us far afield, until, by a sudden and unex- 
pected turning, we find ourselves walking in the val- 
ley, admiring the trees and flowers. 

Jules-Henri Poincark 
(1854-1912) 

*What follo\\~s con- 
cerns rnanifolc~s that  
are  "finite" in a spe- 
cial technical sense of 
the \vord that \vc do  
not need to go into. A 
mathemetician \vould 
cal l  then1 "closed,  
connected"  man i -  
folds. 




